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1. ORIGIN OF THE PROBLEM

A common problem faced by an experimenter is one of comparing
several categories or populétions. These may be, for example,
different varieties of a grain, different competing manufacturing
processes for an industrial product, or different drugs (treatments)
for a specific disease.  In other words, we have k(>2) populations

and each population is characterized by the value of a parameter of

interest 6, which may be, in the example of drugs, an appropriate
measure of the effectiveness of a drug. The classical approach to
this problem is to test the homogeneity (null) hypothesis HO:

91 £ i = ek, where 61,...,ek are the values of the parameter

for these populations. In the case of normal populations with

; 2 .
means 6 ..,ek and a common variance ¢~ , the test can be carried

i
out usi;g the F-ratio of the analysis of variance.

The above classical approach is inadequate and unrealistic in
the sense that it is not formulated in a way to answer the
experimenter's question, namely, how to identify the best category?
In fact, the method of least significant differences based on
t-tests has been used in the past to detect differences between the
average yields of different varieties and thereby choose the 'best'

variety. But this method is indirect, less efficient and does not

*This work was supported in part by the Office of Naval Research
Contract N00014-75-C-0455 at Purdue University.




easily provide an overall probability of a correct selection. Also
the multiple comparison techniques developed largely by Tukey (1949)
and Scheffe (1953) arose from the desire to draw inference about the
populations when the homogeneity hypothesis is rejected. For

details of several multiple comparison techniques, see Miller (1966).
2. SELECTION AND RANKING PROCEDURES

The formulation of a k-sample problem as a multiple decision
problem enables the experimenter to anwer his natural questions
regarding the best category. Among the early investigators of such
procedures are Paulson (1949), Bahadur (1950), Bahadur and Robbins
(1950). The formulation of multiple decision procedures in the
framework of selection and ranking procedures has been generally
accomplished either using the indifference zone approach or the
(random sized) subset selection approach. The former approach was
introduced by Bechhofer (1954). Substantial contribution to the
early and subsequent developments in the subset selection theory

has been made by Gupta starting from his work in 1956.
3. DESCRIPTION OF THE TWO APPROACHES

Bechhofer (1954) considered the problem of ranking k normal
means. In order to explain the basic formulation, consider the
problem of selecting the population with the largest mean from k
normal populations with unknown means Hys i=1l,...,k, and a common
known variance 62. Let §€, i=1l,...,k, denote the means of
independent samples of size n from these populations. The 'natural'
procedure (which can be shown to have optimum properties) will be to
select the population that yields the largest §£. The experimenter
would, of course, need a guarantee that this procedure will pick the
population with the largest Hy with a probability not less than a
specified level P*. For the problem to be meaningful P* lies
between 1/k and 1. Since we do not know the true configuration of
the Hy, we look for the least favorable configuration (LFC) for
which the probability of a correct selection (PCS) will be at least
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P*., Since the LFC is given by My ® e ®mip, the probability
guarantee cannot be met whatever be the sample size n.

4 | | A natural modification is to insist on the minimum probability
guarantee whenever the best population is sufficiently superior to
the next best. In other words, the experimenter specifies a
positive constant A* and requires that the PCS is at least P*
whenever u[k] - u[k-l] > A*, where u[l] S S u[k] denote the
ordered means. Now the minimization of PCS is over the part QA* of
the parameter space in which u[k] - ”[k-l] > A*, The complement of

Qe is called the indifference zone for the obvious reason. The LFC

in Q,, is given by 1) = v T ¥[ke1] = Mqx]o4*- The problem is to
determine the minimum sample size required in order to have PCS > P*
for the LFC.

Bechhofer's formulation is more general than what is describ d
above. His general ranking problem includes, for example, selection
of the t best populations.

In the subset selection approach, the goal is to select a
non-empty subset of the populations so as to include the best
population. Here the size of the selected subset is random and is
determined by the observations themselves. In the case of normal
populations with unknown means Hpseeoshys and a common variance 02,
the rule proposed by Gupta (1956) selects the population that yields
x; if and only if x; > max ;5 - , where d = d(k,P*) > 0 is

i<j<k /n
determined so that the PCS is at least P*. Here a correct selection
is selection of any subset that includes the population with the
largest My Thus, the LFC is with regard to the whole parameter
space Q. Under this formulation, for given k and P* we determine d.
A The rule explicitly involves n. In general, the rule will involve
9 a constant which depends on k, P*, and n. The performance of a
subset selection procedure is studied by evaluating the expected

subset size and its supremum over the parameter space Q.




4. TWO EXAMPLES

Example 1. Given five normal populations with unknown means

and a common variance 64, it is desired to find which population
has the largest mean and to guarantee that the probability of
correctly choosing that population is at least 0.90 whenever
“[5] - u[4] > 4. How many observations must be taken from each
population?

We have /n A = 2.5997 from Table I of Bechhofer (1954) where
A = A*/o = 0.5. Thus we take 28 observations from each population.

Example 2. Given the five normal populations as above, it is
desired to select a non-empty subset of these populations based on
n=8 observations from each population with the guarantee that the
population with the largest mean will be included in the selected
subset with a probability not less than 0.90. Using Tables in
Gupta (1963) (or Gupta, Nagel and Panchapakesan (1973), we find
that d=d(5,.90) = 2.5997 and d/vn = .983. Using a program for
generating random normal deviates N(0 + a8, 1), 8=1, «=0,1,2,3,4,

the following sample means Ig based on n=7 were observed:

-0.1940 .7987 2.5953 2.8754 4,3841

In this example then, the subset selection rule selects only the
observed populations corresponding to observed §; in the interval
[3.401, 4.384]. Thus, only the population with the largest §;
value is selected in the subset. Note the procedure of Bechhofer

will also select the same population with probability of a correct

selection equal to .969. The subset selection procedure gives the

probability of a correct selection to be between .999 and 1.000 and
the associated expected proportions of the number of populations

selected in this case lies between .28 and .36.
5. MODIFICATIONS AND GENERALIZATIONS

The above basic formulations have been modified and generalized
by several authors. Mahamunulu (1966) has discussed a generalized f
goal for fixed-size subset selection. His goal is to select a E
\ subset of size s from k populations so that the selected subset *




contains at least c of the t best populations. Of course, the

constants c¢,s,t,k should satisfy some obvious inequalities. The
problem is to determine the minimum sample size such that the PCS

f * o * (i <
i > P* whenever u[k-t+1] “[k-t] > d* (in the case of normal means)
Desu and Sobel (1968) considered the inverse problem of selecting a
subset of the smallest fixed size s given the sample size so that

the selected subset will contain the t best of k populations

TR TP T L

(t <s <k). A formulation for eliminating strictly inferior
populations has been used by Desu (1970), and Carroll, Gupta and

; ‘ Huang (1975). Some generalized results in this direction are given
by Panchapakesan and Santner (1977).

1 A restricted subset size formulation has been studied by
Santner (1975), and Gupta and Santner (1973). The idea here is to

E | select a subset of random size subject to this size not exceeding a

] * maximum. In the case of k normal populations of unknown means Mo

f ' i=1,...,k, and a common known variance 02, let m(1 < m < k) be the
maximum subset size permissible. The goal is to select a subset of
F size not exceeding m such that the subset contains the population

with the largest mean with a probability not less than P* whenever

VK] T H[k-1] > 6. The rule proposed by Gupta and Santner (1973)
selects the population corresponding to §; if and only if

- do//n}

Yi > max {;[k-md]’ 'x_[k]

where d > 0 is a constant to be suitably determined. For given §,

i

n, and m, the probability guarantee can be met for P* values not
W Pl(k,m,n,d). y
Other generalizations and modifications have been studied by
Deverman and Gupta (1969), Sobel (1969), Gupta and Panchapakesan
(1972) , Alam and Thompson (1973), and Huang and Panchapakesan

exceeding a certain value P

(1976). There has also been interest in decision-theoretic

formulations of subset selection. Specific mention should be made
of Studden (1967), Deely and Gupta (1968), Goel and Rubin (1975), ;
Bickel and Yahav (1977), Berger (1977), and Hsu (1977). In the |
papers by Chernoff and Yahav (1977) and Hsu (1977), Monte Carlo

| studies have been carried out in the framework of subset selection '

oo e




5
i

which show that Bayes procedures can be closely approximated by

Gupta type procedures.
6. CONCLUSION

In the last twenty-five years, the research in the area of
selection and ranking procedures has progressed steadily and the
present count of published papers and technical reports exceeds
five hundred. Though these procedures have the potential for
application and the use is increasing, it should be admitted that
such use is not yet on a large scale. We should perhaps hasten to
add that the situation is not unusual considering the fact that it
calls for giving up the ingrained habit of testing of hypotheses or
tests of significance and ANOVA on the part of applied statisticians.
The time is right to remind the theoreticians among ourselves that
the gap in the communication with the users is yet to be closed.
Some encouraging signs of adopting multiple decision (selection
and ranking) theory as realistic alternative to hypotheses testing
have again appeared on the horizon. At an international

symposium at Purdue in May 1976, there were papers presented on

this topic from some competent statisticians, who had earlier not

worked on these problems. These include Bickel, Chernoff and Yahav.
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